Using the Euclidean algorithm integer integers $x$ and $y$ is: [ (-30 + 37k ), (133 - 164k) ].
Given:
$164x + 37y = 1
First step
Sequence of quotients
4(37) + 16=164
2(16) + 5=37
3(5) + 1=16
4(1) + 1=5
1(1) + 0=1
4 2 3 4 1
1 0 1 2 7 30 37
0 1 4 9 31 133 164
Determinant
(164×30) - (37×133)
=4,920-4,921
= -1
164(-30) + 37(133)
=-4,920+4,921
= 1
Second step
Integer
[(x + bk), (y - ak) ]
Where:
x = -30
y = 133
k=integer
Hence:
[ (-30 + 37k ), (133 - 164k) ]
Therefore using the Euclidean algorithm the integer is: [ (-30 + 37k ), (133 - 164k) ].
Learn more about Eucledian Algorithm here:https://brainly.com/question/24836675
#SPJ1