Respuesta :

Answer:

P(Not a 3)=0.85. This is option C.

Step-by-step explanation:

P(Not a 3) would include values 1,2 and 4.

Therefore, P(Not a 3) would be the combined totals of the probabilities of P(1), P(2) and P(4).

P(Not a 3)= P(1)+P(2)+P(4)

P(Not a 3)= 0.30+0.40+0.15

P(Not a 3)=0.85

Alternate method

P(Not a 3) is the same as 1-P(3)

P(Not a 3)=1-P(3)

P(Not a 3)= 1-0.15

P(Not a 3)=0.85