cater81
contestada

Complete the Proof Statements Reasons 1. ABCD is a given AC BD 2. AD BC 3. 4. AABC=ABAD 5 ZDAB=LCBA 6. 7. ABCD is a rectangle 1. 2. 3. 4. 5. 6. 7. Congruent supp. angles are right angles 8. Given: ABCD is a parallelogram AC = BD Prove: ABCD is a rectangle SSS Triangle Congruence Theorem mZDAB = 90° m/CBA = 90° Reflexive Property of Congruence ZDAB and ZCBA are supplementary Definition of Rectangle O B CPCTC If the quad is a both pairs of opposite sides are congruent Consecutive angles in a are supplementary AB = AB​

Complete the Proof Statements Reasons 1 ABCD is a given AC BD 2 AD BC 3 4 AABCABAD 5 ZDABLCBA 6 7 ABCD is a rectangle 1 2 3 4 5 6 7 Congruent supp angles are ri class=

Respuesta :

1) ABCD is a parallelogram, [tex]\overline{AC} \cong \overline{BD}[/tex] (given)

2) [tex]\overline{AD} \cong \overline{BC}[/tex] (if the quadrilateral is a parallelogram, both pairs of opposite sides are congruent)

3) [tex]\overline{AB} \cong \overline{AB}[/tex] (reflexive property of congruence)

4) [tex]\triangle ABC \cong \triangle BAD[/tex] (SSS Triangle Congruence Theorem)

5) [tex]\angle DAB \cong \angle CBA[/tex] (CPCTC)

6) [tex]\angle DAB[/tex] and [tex]\angle CBA[/tex] are supplementary (consecutive angles in a parallelogram are supplementary)

7) [tex]m\angle DAB=90^{\circ}, m\angle CBA=90^{\circ}[/tex] (congruent supplementary angles are right angles)

8) [tex]ABCD[/tex] is a rectangle (definition of rectangle)