iykle70
contestada

Which of the following functions is represented in the graph shown?

f(x) = −2cos(2x) + 1
f(x) = −4cos(2x) − 1
f(x) = −2cos(x) − 1
f(x) = −4cos(x) + 1

Which of the following functions is represented in the graph shown fx 2cos2x 1 fx 4cos2x 1 fx 2cosx 1 fx 4cosx 1 class=

Respuesta :

Answer:

[tex]f(x)=-2\cos(2x)+1[/tex]

Step-by-step explanation:

Recall the general cosine equation

  • Function: [tex]f(x)=a\cos(bx+c)+d[/tex]
  • Amplitude: [tex]|a|[/tex]
  • Period: [tex]\frac{2\pi}{|b|}[/tex]
  • Vertical Shift: [tex]-\frac{c}{b}[/tex]
  • Midline: [tex]y=d[/tex]

Identify amplitude

[tex]\text{Amplitude}=\frac{\text{Max-Min}}{2}=\frac{3-(-1)}{2}=\frac{4}{2}=2[/tex]

Identify period and solve for b

[tex]\frac{3\pi}{2}-\frac{\pi}{2}=\pi\\ \\\frac{2\pi}{|b|}=\pi\\ \\2\pi=b\pi\\\\2=b[/tex]

Identify midline

[tex]y=d=1[/tex]

Final Equation

[tex]f(x)=-2\cos(2x)+1[/tex]

Also, the reason why [tex]a=-2[/tex] is because a cosine function starts at its maximum, but since it starts at its minimum, the value of [tex]a[/tex] must be negative and causes the wave to flip about the midline.