Respuesta :
Answer:
[tex]\displaystyle \int\limits^1_4 {\frac{\cos x}{1 + \frac{e}{x}}} \, dx \approx \boxed{0.862854}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
[tex]\displaystyle (u + v)' = u' + v'[/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Integration Methods: U-Substitution and U-Solve
Special Integrals:
- Sine Integral:
[tex]\displaystyle \int {\frac{\sin x}{x}} \, dx = \text{Si} (u) + C[/tex] - Cosine Integral:
[tex]\displaystyle \int {\frac{\cos x}{x}} \, dx = \text{Ci} (u) + C[/tex]
Step-by-step explanation:
*Note:
The problem is too big to fit all work. I will assume that you know how to do basic calculus.
Step 1: Define
Identify given.
[tex]\displaystyle \int\limits^1_4 {\frac{\cos x}{1 + \frac{e}{x}}} \, dx[/tex]
Step 2: Integrate Pt. 1
- [Integrand] Rewrite:
[tex]\displaystyle \begin{aligned}\int\limits^1_4 {\frac{\cos x}{1 + \frac{e}{x}}} \, dx & = \int\limits^1_4 {\frac{x \cos x}{x + e} \, dx \leftarrow \\\end{aligned}[/tex]
Step 3: Integrate Pt. 2
Identify variables for u-substitution.
- Set u:
[tex]\displaystyle u = x + e[/tex] - [u] Differentiate [Derivative Rules and Properties]:
[tex]\displaystyle du = dx[/tex]
Step 4: Integrate Pt. 3
- [Integral] Apply Integration Method [U-Substitution]:
[tex]\displaystyle \begin{aligned}\int\limits^1_4 {\frac{\cos x}{1 + \frac{e}{x}}} \, dx & = \int\limits^1_4 {\frac{x \cos x}{x + e} \, dx \\& = \int\limits^{x = 1}_{x = 4} {\frac{(u - e) \cos (u - e)}{u} \, du \leftarrow \\\end{aligned}[/tex] - [Integral] Rewrite [Integration Property - Addition/Subtraction]:
[tex]\displaystyle \begin{aligned}\int\limits^1_4 {\frac{\cos x}{1 + \frac{e}{x}}} \, dx & = \int\limits^1_4 {\frac{x \cos x}{x + e} \, dx \\& = \int\limits^{x = 1}_{x = 4} {\frac{(u - e) \cos (u - e)}{u} \, du \\ & = \int\limits^{x = 1}_{x = 4} {\cos ( u - e)} \, du - \int\limits^{x = 1}_{x = 4} {\frac{e \cos (u - e)}{u}} \, du \leftarrow \\\end{aligned}[/tex] - [2nd Integral] Rewrite [Integration Property - Multiplied Constant]:
[tex]\displaystyle \begin{aligned}\int\limits^1_4 {\frac{\cos x}{1 + \frac{e}{x}}} \, dx & = \int\limits^{x = 1}_{x = 4} {\cos ( u - e)} \, du - e \int\limits^{x = 1}_{x = 4} {\frac{\cos (u - e)}{u}} \, du \leftarrow \\\end{aligned}[/tex]
Step 5: Integrate Pt. 4
Identify variables for u-substitution for the 1st integral.
Use another variable besides u to avoid confusion with earlier substitutions.
- Set v:
[tex]\displaystyle v = u - e[/tex] - [v] Differentiate:
[tex]\displaystyle dv = du[/tex]
Step 6: Integrate Pt. 5
Solve the 1st integral using basic integration techniques listed under "Calculus":
[tex]\displaystyle \begin{aligned}\int\limits^{x = 1}_{x = 4} {\cos (u - e)} \, du & = \int\limits^{x = 1}_{x = 4} {\cos v} \, dv \\& = \sin v \bigg| \limits^{x = 1}_{x = 4} \\& = \sin (u - e) \bigg| \limits^{x = 1}_{x = 4} \\& = \sin (x) \bigg| \limits^{x = 1}_{x = 4} \\& = \sin 1 - \sin 4\end{aligned}[/tex]
Step 7: Integrate Pt. 6
To solve the 2nd integral, we use the same methods as "Step 6":
[tex]\displaystyle\begin{aligned}\int\limits^{x = 1}_{x = 4} {\frac{\cos (u - e)}{u}} \, du & = \int\limits^{x = 1}_{x = 4} {\frac{\sin e \sin u + \cos e \cos u}{u}} \, du \\& = \sin e \int\limits^{x = 1}_{x = 4} {\frac{\sin u}{u}} \, du + \cos e \int\limits^{x = 1}_{x = 4} {\frac{\cos u}{u}} \, du \\& = \sin (e) \text{Si} (u) \bigg| \limits^{x = 1}_{x = 4} + \cos (e) \text{Ci} (u) \bigg| \limits^{x = 1}_{x = 4} \\\end{aligned}[/tex]
[tex]\displaystyle\begin{aligned}\int\limits^{x = 1}_{x = 4} {\frac{\cos (u - e)}{u}} \, du & = \sin (e) \text{Si} (x + e) \bigg| \limits^{x = 1}_{x = 4} + \cos (e) \text{Ci} (x + e) \bigg| \limits^{x = 1}_{x = 4} \\& = \bigg[ \sin (e) \text{Si} (1 + e) - \sin (e) \text{Si} (4 + e) \bigg] + \bigg[ \cos (e) \text{Ci} (1 + e) - \cos (e) \text{Ci} (4 + e) \bigg] \\\end{aligned}[/tex]
Step 8: Integrate Pt. 7
Combine our 2 integral values to obtain a final answer:
[tex]\displaystyle \int\limits^1_4 {\frac{\cos x}{1 + \frac{e}{x}}} \, dx & = \int\limits^{x = 1}_{x = 4} {\cos ( u - e)} \, du - e \int\limits^{x = 1}_{x = 4} {\frac{\cos (u - e)}{u}} \, du \\\begin{aligned}& = \sin 1 - \sin 4 - e \bigg[ \sin (e) \text{Si} (1 + e) - \sin (e) \text{Si} (4 + e) + \cos (e) \text{Ci} (1 + e) - \cos (e) \text{Ci} (4 + e) \bigg] \\& \approx \boxed{0862854} \\\end{aligned}[/tex]
∴ we have evaluated the given special definite integral.
---
Learn more about integration: https://brainly.com/question/27746472
Learn more about Calculus: https://brainly.com/question/27746481
---
Topic: Calculus