Respuesta :

Answer:

[tex]\left(\dfrac{1}{4},\dfrac{49}{8}\right)[/tex]

Step-by-step explanation:

Turning points (stationary points) occur when the gradient of a graph is zero.

To find when the gradient of the graph is zero, differentiate the function, set it zero, then solve for x.

Given function:

[tex]f(x)=-2x^2+x+6[/tex]

Differentiate:

[tex]\implies f'(x)=(2)(-2)x^{2-1}+(1)x^{1-1}+6(0)[/tex]

[tex]\implies f'(x)=-4x+1[/tex]

Set the differentiated function to zero and solve for x:

[tex]\implies f'(x)=0[/tex]

[tex]\implies -4x+1=0[/tex]

[tex]\implies 4x=1[/tex]

[tex]\implies x=\dfrac{1}{4}[/tex]

To find the y-coordinate, input the found value of y into the given function:

[tex]\implies f\left(\dfrac{1}{4}\right)=-2\left(\dfrac{1}{4}\right)^2+\left(\dfrac{1}{4}\right)+6[/tex]

[tex]\implies f\left(\dfrac{1}{4}\right)=\dfrac{49}{8}[/tex]

Therefore, the turning point of the function is:

[tex]\left(\dfrac{1}{4},\dfrac{49}{8}\right)[/tex]

answers

f=1/4=49/8

Step-by-step explanation:

identify the coefficients

a=-2, b=1

substitute the coefficient into the expression

x= -1/((2x(-2))

then solve it out the equation

x=1/4

evaluate the function x =1/4

f(x) =-2x²+x+6(1/4)

f=1/4=49/8