Respuesta :

Answer:

[tex]a_n=3(-3)^{n-1}[/tex]

Step-by-step explanation:

Geometric sequence

General form of a geometric sequence: [tex]a_n=ar^{n-1}[/tex]

where:

  • [tex]a_n[/tex] is the nth term
  • a is the first term
  • r is the common ratio

Given:

  • [tex]a_1=3[/tex]
  • [tex]a_2=-9[/tex]

To find the common ratio r, divide consecutive terms:

[tex]\implies r=\dfrac{a_2}{a_1}=\dfrac{-9}{3}=-3[/tex]

Therefore, the equation is:

[tex]a_n=3(-3)^{n-1}[/tex]