Respuesta :

Answer:

see explanation

Step-by-step explanation:

the sum of the 3 angles in the triangle = 180° , then

∠ BAC + 51° + 90° = 180°

∠ BAC + 141° = 180° ( subtract 141° from both sides )

∠ BAC = 39°

using the tangent ratio in the right triangle

tan51° = [tex]\frac{opposite}{adjacent }[/tex] = [tex]\frac{AC}{BC}[/tex] = [tex]\frac{AC}{12.8}[/tex] ( multiply both sides by 12.8 )

12.8 × tan51° = AC , then

AC ≈ 15.8 ( to 1 dec. place )

using the cosine ratio in the right triangle

cos51° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{BC}{AB}[/tex] = [tex]\frac{12.8}{AB}[/tex] ( multiply both sides by AB )

AB × cos51° = 12.8 ( divide both sides by cos51° )

AB = [tex]\frac{12.8}{cos51}[/tex] ≈ 20.3 ( to 1 dec. place )