Respuesta :
If we want to write the given four numbers in another form, we can write it like this;
[tex]tan45=sin45/cos45=1[/tex]
[tex]sin30=sin(\frac{\pi }{2}-60 )=cos60=\frac{1}{2}[/tex]
[tex]cot45=cos45/sin45=1[/tex]
[tex]sec60=1/cos60=\frac{1}{1/2} =2[/tex]
Now let's rewrite the given expression and get the result.
[tex](tan45.sin30)-(cot45/sec60)=(1.\frac{1}{2})-(\frac{1}{2} )=0[/tex]
Answer:
0
Step-by-step explanation:
Using trigonometric functions and table to substitute values,we obtain
- [tex]1 \times \sin45 - \cfrac{ \cot(45) }{ \sec(60) } [/tex]
- [tex] \sin(30) - \cfrac{ \cfrac{\cos(45)}{ \sin45} }{ \cfrac{1}{ \cos(60) } } [/tex]
- [tex] \cfrac{1}{2} - \cfrac{ \cfrac{\cos(45)}{ \sin45} }{ \cfrac{1}{ \cos(60) } } [/tex]
Rewrite 1/cos(60) as
- [tex] \cfrac{1}{2} - \cfrac{ \cos(45) \times \cos(60) }{ \sin(45) } [/tex]
Rewriting again:
- [tex] \cfrac{1}{2} - \cfrac{ \cancel{\cfrac{\sqrt{2}}{2} }\times \cfrac{1}{2} }{ \cancel{\cfrac{ \sqrt{2} }{2}} } [/tex]
- [tex] \cfrac{1}{2} - \cfrac{1}{2} [/tex]
[LCM of 2 is 2]
- [tex] \cfrac{1 - 1}{2} = \boxed0[/tex]