Respuesta :
Answer:
[tex]\textsf{Factored form}: \quad f(x)=2x(x-4)[/tex]
[tex]\textsf{Vertex form}: \quad f(x)=2(x-2)^2-8[/tex]
Step-by-step explanation:
Factored form of a quadratic function
[tex]f(x)=a(x-p)(x-q)[/tex]
where:
- p and q are the x-intercepts
- a is some constant
Given x-intercepts:
- (0, 0)
- (4, 0)
Therefore:
[tex]\implies f(x)=a(x-0)(x-4)[/tex]
[tex]\implies f(x)=ax(x-4)[/tex]
To find a, substitute the given vertex (2, -8) into the equation and solve for a:
[tex]\implies 2a(2-4)=-8[/tex]
[tex]\implies -4a=-8[/tex]
[tex]\implies a=2[/tex]
Therefore, the function's equation in factored form is:
[tex]f(x)=2x(x-4)[/tex]
Vertex form of a quadratic equation
[tex]f(x)=a(x-h)^2+k[/tex]
where:
- (h, k) is the vertex
- a is some constant
Given:
- vertex = (2, -8)
Therefore:
[tex]\implies f(x)=a(x-2)^2-8[/tex]
To find the constant a, substitute one of the x-intercepts into the equation and solve for a:
[tex]\implies a(0-2)^2-8=0[/tex]
[tex]\implies 4a-8=0[/tex]
[tex]\implies a=2[/tex]
Therefore, the function's equation in vertex form is:
[tex]f(x)=2(x-2)^2-8[/tex]
x intercepts=0,4
So the equation
- y=a(x-b)(x-c)
- y=ax(x-4)
Now put vertex and find a
- -8=a(2)(2-4)
- -8=2a(-2)
- a=-8/-4
- a=2
So equation
- y=2x(x-4)