Step-by-step explanation:
well if you ment
[tex]5 \sqrt{ \frac{x}{5} } [/tex]
then the inverse is:
[tex]y = 5 \sqrt{ \frac{x}{5} } = = > {y}^{2} = 25( \frac{x}{5}) = = = > \\ {y}^{2} = 5x = = = > \frac{{y}^{2} }{5} = x = = = > \\{f}^{ - 1} (x) = \frac{ {x}^{2} }{5} [/tex]
and if you ment
[tex] 5 \frac{ \sqrt{x} }{5 } [/tex]
then the inverse is:
[tex]y = 5 \frac{ \sqrt{x} }{5} = = = > y = \sqrt{x} = = = = > \\ {y}^{2} = x = = = > \\ {f}^{ - 1} (x) = {x}^{2} [/tex]