By applying the definitions of trigonometric functions, the exact values of the sine, secant and tangent of the point on the terminal side are [tex]\sin \theta = \frac{2}{\sqrt{53}}[/tex], [tex]\sec \theta = -\frac{\sqrt{53}}{7}[/tex] and [tex]\tan \theta = -\frac{2}{7}[/tex].
In this question we need to find the exact values of three trigonometric functions associated with the terminal side of an angle. The following definitions are used:
Sine
[tex]\sin \theta = \frac{y}{\sqrt{x^{2}+y^{2}}}[/tex] (1)
Secant
[tex]\sec \theta = \frac{\sqrt{x^{2}+y^{2}}}{x}[/tex] (2)
Tangent
[tex]\tan \theta = \frac{y}{x}[/tex] (3)
If we know that x = - 7 and y = 2, then the exact values of the three trigonometric functions:
Sine
[tex]\sin \theta = \frac{2}{\sqrt{53}}[/tex]
Secant
[tex]\sec \theta = -\frac{\sqrt{53}}{7}[/tex]
Tangent
[tex]\tan \theta = -\frac{2}{7}[/tex]
By applying the definitions of trigonometric functions, the exact values of the sine, secant and tangent of the point on the terminal side are [tex]\sin \theta = \frac{2}{\sqrt{53}}[/tex], [tex]\sec \theta = -\frac{\sqrt{53}}{7}[/tex] and [tex]\tan \theta = -\frac{2}{7}[/tex].
The statement reports typing errors, correct form is shown below:
Let (x, y) = (- 7, 2) be a point on the terminal side of θ. Find the exact value of sin θ, sec θ and tan θ.
To learn more on trigonometric functions: https://brainly.com/question/6904750
#SPJ1