Answer:
5.1% (nearest tenth)
Step-by-step explanation:
Annual Compound Interest Formula
[tex]\large \text{$ \sf A=P\left(1+r\right)^{t} $}[/tex]
where:
Given:
Substitute the given values into the formula and solve for r:
[tex]\implies \sf 2209=2000\left(1+r\right)^{2}[/tex]
[tex]\implies \sf \dfrac{2209}{2000}=(1+r)^2[/tex]
[tex]\implies \sf 1.1045=(1+r)^2[/tex]
[tex]\implies \sf \sqrt{1.1045}=1+r[/tex]
[tex]\implies \sf r = \sqrt{1.1045}-1[/tex]
[tex]\implies \sf r = 0.05095194942...[/tex]
[tex]\implies \sf r = 5.095194942...\%[/tex]
Therefore, the annual interest rate is 5.1% (nearest tenth)