Respuesta :

The Area of the triangle with the given position vectors are; 12.59 sq.units

How to find the area of a triangle?

We are given the position vectors;

A = (3i - 2j + 7k)

B = (2i + 4j + k)

C = (5i + 3j - 2k)

Thus;

AB = B - A

AB = (2i + 4j + k) - (3i - 2j + 7k)

AB = -i + 6j - 6k

BC = C - B

BC = (5i + 3j - 2k) - (2i + 4j + k)

BC = 3i - j - k

CA = A - C

CA = (3i - 2j + 7k) - (5i + 3j - 2k)

CA = -2i - 5j + 9k

Length of AB = √[(-1)² + (6)² + (-6)²]

Length of AB = √73 = 8.544

Length of BC = √[(3)² + (-1)² + (-1)²]

Length of BC = √11 = 3.3166

Length of CA = √[(-2)² + (-5)² + (9)²]

Length of BC = √110 = 10.488

Area of a triangle with 3 side lengths is;

Area = √(s(s - a)(s - b)(s - c))

where; s = (a + b + c)/2

Thus;

s = (√73 + √11 + √110)/2

s = 11.174

Area = √(11.174(11.174 - 8.544)(11.174 - 3.3166)(11.174 - 10.488))

Area = 12.59 sq.units

Read more about Area of Triangle at; https://brainly.com/question/23945265

#SPJ1