Answer:
5√2 units
Step-by-step explanation:
Use distance formulae to find out the distance.
- [tex] \rm \: Distance = \sqrt{(x_2-x_1) {}^{2} +(y_2-y_1) {}^{2} }[/tex]
ATQ,
- [tex] \rm \: (x_2,x_1) = (9,2)[/tex]
- [tex]\rm (y_2,y_1) = (0,1)[/tex]
Substituting them on the formulae,we obtain
- [tex] \rm \: Distance \: D = \sqrt{(9 - 2) {}^{2} + (0 - 1) {}^{2} } [/tex]
- [tex] \rm \: Distance \: D = \sqrt{7 {}^{2} - 1 {}^{2} } [/tex]
- [tex] \rm \: Distance \; D = \sqrt{49 + (- 1 \times - 1)} [/tex]
- [tex]\rm Distance \: D = \sqrt{49 + 1} [/tex]
- [tex]\rm Distance\; D = \sqrt{50} [/tex]
- [tex] \boxed{ \rm \: Distance \: D = 5 \sqrt{2} \: units}[/tex]