Respuesta :

The required function is, f(x) = 2x³+3x²-x-4

What is formula of cubic regression ?

The general equation of cubic regression is,

f(x) = ax³+bx²+cx+d  , where a,b,c,d are real numbers which are co-efficients of the variable terms.

What is the required function ?

The point (0, -4) indicates that y-intercept is -4,

So the cubic regression equation becomes,

f(x) = ax³+bx²+cx-4

Another three given points are (-3,-28), (4,168) & (-5,-174)

Now, for the 1st point,

f(-3) = a(-3)³+b(-3)²+c(-3)-4

⇒ -28 = -27a+9b-3c-4

⇒ 27a-9b+3c = 24    ........(1)

For the 2nd point,

f(4) = a(4)³+b(4)²+c(4)-4

⇒ 168 = 64a+16b+4c-4

⇒ 64a+16b+4c = 172    ........(2)

For the 3rd point,

f(-5) = a(-5)³+b(-5)²+c(-5)-4

⇒ -174 = -125a+25b-5c-4

⇒ 125a-25b+5c = 170     .........(3)

Now multiply 27 with (2) & multiply 64 with (1), then subtract (1) from (2),

27(64a+16b+4c)-64(27a-9b+3c) = 4644-1536

⇒ 1728a+432b+108c-1728a+576b-192c = 3108

⇒ 1008b-84c = 3108

⇒ 84b-7c=259 ......(4)

Now multiply 125 with (2) & multiply 64 wuth (3), then subtract (3) from (2),

125(64a+16b+4c)-64(125a-25b+5c) = 21500-10880

⇒ 8000a+2000b+500c-8000a+1600b-320c = 10620

⇒ 3600b+180c = 10620

⇒ 20b+c=59    ........(5)

So, multiply 20 with (4) & multiply 84 with (5), then subtract (5) from (4),

20(84b-7c)-84(20b+c)=5180-4956

⇒ 1680b-140c-1680b-84c=224

⇒ 224c = -224

⇒ c = -1

From (5),

20b-1=59

⇒ 20b = 60

⇒ b = 3

Now, from (1),

27a-9(3)+3(-1)=24

⇒ 27a-27-3=24

⇒ 27a -30 = 24

⇒ 27a = 54

⇒ a = 2

So, a=2, b=3 & c=-1

The equation becomes, f(x) = 2x³+3x²-x-4

Learn more about cubic regression here :

https://brainly.com/question/27577241

#SPJ10