Respuesta :

Answer:

23.1 years  (nearest tenth)

Step-by-step explanation:

Compound Interest Formula

[tex]\large \text{$ \sf A=P\left(1+\frac{r}{n}\right)^{nt} $}[/tex]

where:

  • A = final amount
  • P = principal amount
  • r = interest rate (in decimal form)
  • n = number of times interest applied per time period
  • t = number of time periods elapsed

Given:

  • A = $1200
  • P = $600
  • r = 3% = 0.03
  • n = 12 (as compounded monthly)
  • t = years

Substitute the given values into the formula and solve for t:

[tex]\implies \sf 1200=600\left(1+\dfrac{0.03}{12}\right)^{12t}[/tex]

[tex]\implies \sf 1200=600\left(1.0025\right)^{12t}[/tex]

[tex]\implies \sf \dfrac{1200}{600}=\left(1.0025\right)^{12t}[/tex]

[tex]\implies \sf 2=\left(1.0025\right)^{12t}[/tex]

Take natural logs:

[tex]\implies \sf \ln 2=\ln \left(1.0025\right)^{12t}[/tex]

[tex]\implies \sf \ln 2=12t\ln \left(1.0025\right)[/tex]

[tex]\implies t=\dfrac{ \ln 2}{12 \ln (1.0025)}[/tex]

[tex]\implies t=23.13377513...[/tex]

[tex]\implies t=23.1\: \sf years \:\:(nearest\:tenth)[/tex]

The money will double in value in approximately [tex]\boxed{\sf 23.1}[/tex] years.

Used formula

[tex]\boxed{\sf A=P(1+\dfrac{r}{n})^{nt}}[/tex]

[tex]\\ \implies \sf 1200=600\left(1.0025\right)^{12t}[/tex]

[tex]\\ \implies \sf \dfrac{1200}{600}=\left(1.0025\right)^{12t}[/tex]

[tex]\\ \implies \sf 2=\left(1.0025\right)^{12t}[/tex]

  • Apply natural logarithm on both sides

[tex]\implies \sf \ln 2=\ln \left(1.0025\right)^{12t}[/tex]

[tex]\\ \implies \sf \ln 2=12t\ln \left(1.0025\right)[/tex]

[tex]\\ \implies t=\dfrac{ \ln 2}{12 \ln (1.0025)}[/tex]

[tex]\\ \implies t=23.1years[/tex]