Respuesta :

Answer:

Standard Deviation is s = 2.9

Step-by-step explanation:

Count = [tex]N[/tex] = 5

Mean = [tex]x^-[/tex] = 9

Variance = [tex]s^2[/tex] = 8.5

SD Formula = [tex]s = \sqrt \frac{1}{N - 1} (x_{i} - x^-)^2[/tex]

Variance Formula[tex]s^2 = \frac{(x_{i} - x^-)^2}{N- 1}[/tex]

Step 1: Calculate the variance

[tex]= \frac{(7-9)^2 + (5-9)^2 + (10-9)^2 + (11-9)^2 + (12 -9)^2 }{5-1}[/tex]

[tex]=\frac{34}{4} = 8.5[/tex]

Step 2: Apply square root/SD formula

[tex]=\sqrt{8.5} = 2.9[/tex]