Respuesta :

Answer:

Step-by-step explanation:

Equation of line in slope y-intercept form:

  (-4,8) ;  x₁ = -4  & y₁ = 8

  (7,-6)  ; x₂ = 7   & y₂ = -6

[tex]\sf \boxed{Slope=\dfrac{y_2-y_1}{x_2-x_1}}[/tex]

           [tex]\sf =\dfrac{-6-8}{7-[-4]}\\\\ =\dfrac{-14}{7+4}\\\\=\dfrac{-14}{11}[/tex]

Equation of line:  

               [tex]\sf y-y_1=m(x-x_1)[/tex]

    [tex]y - 8 = \dfrac{-14}{11}(x -[-4])\\\\y- 8 = \dfrac{-14}{11}(x+4)\\\\y -8 = \dfrac{-14}{11}x-\dfrac{14*4}{11}\\\\ y = \dfrac{-14}{11}x-\dfrac{56}{11}+8\\\\ y =\dfrac{-14}{11}x-\dfrac{56}{11}+\dfrac{88}{11}\\\\y=\dfrac{-14}{11}x+\dfrac{32}{11}[/tex]