Respuesta :

Step-by-step explanation:

Let simplify the identity

[tex] \frac{ \csc {}^{2} (x) - \sec {}^{2} (x) }{ \csc {}^{2} (x) + \sec {}^{2} (x) } [/tex]

[tex] \frac{ \frac{1}{ \sin {}^{2} (x) } - \frac{1}{ \cos {}^{2} (x) } }{ \frac{1}{ \sin {}^{2} (x) } + \frac{1}{ \cos {}^{2} (x) } } [/tex]

Combine Like Fractions

[tex] \frac{ \frac{ \cos {}^{2} (x) - \sin {}^{2} (x) }{ \sin {}^{2} (x) \cos {}^{2} (x) } }{ \frac{ \sin {}^{2} (x) + \cos {}^{2} (x) }{ \cos {}^{2} (x) \sin {}^{2} (x) } } [/tex]

Multiply by reciprocals.

[tex] \frac{ \cos {}^{2} (x) - \sin {}^{2} (x) }{ \sin {}^{2} (x) \cos {}^{2} (x) } \times \frac{ \cos {}^{2} (x) \sin {}^{2} (x) }{ \sin {}^{2} (x) + \cos {}^{2} (x) } [/tex]

Pythagorean Identity

[tex] \frac{ \cos {}^{2} (x) - \sin {}^{2} (x) }{1} [/tex]

Double Angle Identity

[tex] \frac{ \cos(2x) }{1} [/tex]

[tex] \cos(2x) [/tex]

Now, we need to find cos 2x. Given that we have tan x.

Note that

[tex] \cos {}^{2} (x) - \sin {}^{2} (x) = \cos(2x) [/tex]

So let find cos x and tan x.

We know that

[tex] \tan(x) = \frac{ \sin(x) }{ \cos(x) } [/tex]

We know that

[tex] \tan(x) = \frac{o}{a} [/tex]

[tex] \sin(x) = \frac{o}{h} [/tex]

[tex] \cos(x) = \frac{a}{h} [/tex]

So naturally,

[tex] \tan(x) = \frac{ \frac{o}{h} }{ \frac{a}{h} } = \frac{o}{a} [/tex]

So we need to find the hypotenuse,

remember Pythagorean theorem.

[tex]h {}^{2} = {o}^{2} + {a}^{2} [/tex]

Here o is 1

h is root of 5.

So

[tex] {h}^{2} = {1}^{2} + ( \sqrt{5} ) {}^{2} [/tex]

[tex] {h}^{2} = 1 + 5[/tex]

[tex] {h}^{2} = 6[/tex]

[tex]h = \sqrt{6} [/tex]

Now, we know h, let plug in to find sin x and cos x.

[tex] \sin(x) = \frac{1}{ \sqrt{6} } [/tex]

[tex] \cos(x) = \frac{ \sqrt{5} }{ \sqrt{6} } [/tex]

Let's find these values squared

[tex] \sin {}^{2} (x) = \frac{1}{6} [/tex]

[tex] \cos {}^{2} (x) = \frac{5}{6} [/tex]

Finally, use the trig identity

[tex] \frac{5}{6} - \frac{1}{6} = \frac{2}{3} [/tex]

So part I.= 2/3

ii. Use the definition of sine and cosine and Pythagorean theorem

Let sin x= o/h

Let cos x= a/h.

So

sin x squared is

[tex] \sin {}^{2} (x) = \frac{o {}^{2} }{h {}^{2} } [/tex]

[tex] \cos {}^{2} (x) = \frac{ {a}^{2} }{h {}^{2} } [/tex]

By definition,

[tex] \frac{ {o}^{2} }{ {h}^{2} } + \frac{ {a}^{2} }{h {}^{2} } = 1[/tex]

[tex] \frac{ {o}^{2} + a {}^{2} }{h {}^{2} } = 1[/tex]

Remember that

[tex]{ {o}^{2} + {a}^{2} } = {h}^{2} [/tex]

So

[tex] \frac{ {h}^{2} }{h {}^{2} } = 1[/tex]

[tex]1 = 1[/tex]