ZY = 34, WY = 38, and m/ZXY = 34° find WZ

The value of the WZ will be 28.18. The given figure is quadrilateral.
It is concerned with the geometry, region, and density of various 2D and 3D shapes.
In ΔZXY
∠Z+∠X+∠Y=180
∠Z+34°+90°=180°
∠Z = 56°
In Δ WZY
sin Θ = WZ/ZY
sin 56° = WZ/34
WZ= 28.18
Hence, the value of the WZ will be 28.18.
To learn more about geometry, refer to https://brainly.com/question/7558603.
#SPJ1
The side WZ = 30.4.
The angles which lie on the alternate side of the line between two parallel lines.
Given a geometry in which ZY = 34, WY = 38, and ∠ZXY = 34°
In this geometry, opposite sides are equal.
WZ = XY and WX = ZY.....................(1)
The diagonal are perpendicular to each other.
∠XVY = 90°
Diagonal form four right angle triangles. Take ΔXVY
VY = WY/2
VY = 38/2
VY = 17
Using trigonometric property,
sin X° = VY / XY
sin 34° = 17/XY
XY = 30.4
From equation 1, we have
WZ = 30.4
Thus, the value of WZ is 30.4.
Learn more about alternate angles.
https://brainly.in/question/21641995
#SPJ1