Respuesta :
Answer:
B) x =( 2/3, -1)
Step-by-step explanation:
Equation:
[tex]6x {}^{2} + 2x = 4[/tex]
Solution:
We know that,
[tex] \rm \: Quadratic \: formula (x)=\cfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
According to the problem,
- a = 6
- b = 2
- c = -4
Plugging them on the formulae,we obtain,
- [tex]x = \cfrac{ - 2 \pm \sqrt{ 2 {}^{2} - 4 \{6 \times ( - 4) \} } }{2 \times 6} [/tex]
- [tex]x = \cfrac{ - 2 \pm \: \sqrt{4 - 4 \{ - 24 \} } }{12} [/tex]
- [tex]x = \cfrac{ - 2 \pm \: 10 }{12} [/tex]
- [tex]x = \cfrac{ - 1 \pm5}{6} [/tex]
- [tex]\boxed{x = \cfrac{2}{3} \: \rm or - 1}[/tex]
Choice B is accurate.