Respuesta :

Let's see

[tex]\boxed{\sf log_aa=1}[/tex]

Now

[tex]\\ \rm\Rrightarrow log_{10}0.0001)[/tex]

[tex]\\ \rm\Rrightarrow log_{10}10^{-4}[/tex]

[tex]\\ \rm\Rrightarrow -4log_{10}10[/tex]

[tex]\\ \rm\Rrightarrow -4[/tex]

Answer:

This has already been answered correctly, but I'll add an additional perspective.  The log of (0.0001 to the base 10 is -4.

Step-by-step explanation:

log(base 10) says give us an exponent, x, that would be required to make [tex]10^{x}[/tex] equal to a specified number, in this case 0.0001.

[tex]10^{0}[/tex] = 1

[tex]10^{1}[/tex] = 10

[tex]10^{-1}[/tex] = 0.1

[tex]10^{-2}[/tex] = 0.01

[tex]10^{-4}[/tex] = 0.0001

The log of (0.0001) to the base 10 is -4.

Otras preguntas