Respuesta :

Answer:

no solutions

Step-by-step explanation:

we use the quadratic formula.

for an equation ax²+bx+c=0, the solutions for x are:

x = (-b±sqrt(b²-4ac))/2a

in our case, a=2, b=-6 and c=5, so:

x= (6±sqrt(36-40))/4

we see that we get a negative number inside the sqrt, so we have no real solutions

Answer:

No solution

Step-by-step explanation:

1) Use the quadratic formula

[tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.

[tex]2x^2-6x+5=0[/tex]

[tex]a=2\\b=-6\\c=5[/tex]

[tex]x=\frac{-(-6)\pm\sqrt{(-6)^2-4*2*5} }{2*2}[/tex]

2) Simplify

Evaluate the exponent:

[tex]x=\frac{6\pm\sqrt{(-6)^2-4*2*5} }{2*2}[/tex]

[tex]x=\frac{6\pm\sqrt{36-4*2*5} }{2*2}[/tex]

Multiply the numbers:

[tex]x=\frac{6\pm\sqrt{36-4*2*5} }{2*2}[/tex]

[tex]x=\frac{6\pm\sqrt{36-40} }{2*2}[/tex]

Subtract the numbers:

[tex]x=\frac{6\pm\sqrt{36-40} }{2*2}[/tex]

[tex]x=\frac{6\pm\sqrt{-4} }{2*2}[/tex]

Multiply the numbers

[tex]x=\frac{6\pm\sqrt{-4} }{2*2}[/tex]

[tex]x=\frac{6\pm\sqrt{-4} }{4}[/tex]

3) No real solutions because the discriminant is negative

The square root of a negative number is not a real number

[tex]d=-4[/tex]

Result

No solution