Respuesta :

Answer:

A

Step-by-step explanation:

Set the equation equal to bx.

[tex](3x + 3)(ax - 2) - {x}^{2} + 6 = bx[/tex]

[tex]3a {x}^{2} - 6x + 3ax - 6 - {x}^{2} + 6 = bx[/tex]

Cancel out the constants

[tex]3 {ax}^{2} - 6x + 3ax - x {}^{2} = bx[/tex]

In order to cancel out the quadratics, we must solve for a.

[tex]3 {ax}^{2} - {x}^{2} = 0[/tex]

[tex]3 {ax}^{2} = {x}^{2} [/tex]

[tex]3a = 1[/tex]

[tex]a = \frac{1}{3} [/tex]

So plug in 1/3 for a.

[tex]3( \frac{1}{3} ) {x}^{2} - 6x + 3( \frac{1}{3} )x - {x}^{2} = bx[/tex]

[tex] - 6x + x = bx[/tex]

[tex] - 5x = bx[/tex]

[tex]b = - 5[/tex]