Respuesta :

The differentiation of the function y = sin(2 sin⁻¹x) is; dy/dx = d√(1 - y²)]/(√1 - x²)

How to differentiate functions?

1) We want to differentiate the function;

[tex]\frac{\sqrt{x + 1} + \sqrt{x - 1}}{\sqrt{x + 1} - \sqrt{x - 1} }[/tex]

Differentiating this gives;

dy/dx = [tex]\frac{[(\frac{1}{2\sqrt{x + 1}} - \frac{1}{2\sqrt{x - 1}}) * \sqrt{x + 1} + \sqrt{x - 1}]}{(\sqrt{x + 1} - \sqrt{x - 1})^{2} }[/tex]

That can be simplified to get;

dy/dx = [tex]\frac{\sqrt{x + 1} + \sqrt{x - 1} }{(x - 1)\sqrt{x + 1} + (-x - 1) \sqrt{x - 1}}[/tex]

2) We want to differentiate the function;

y = sin(2 sin⁻¹x)

Differentiating the function gives;

dy/dx = [2cos(2 sin⁻¹x)]/√(1 - x²)

We know from trigonometric identity that;

cos²x = 1 - sin²x

Thus;

1 - sin²(2 sin⁻¹x) = cos²(2 sin⁻¹x)

But sin²(2 sin⁻¹x) = y²cos²(2 sin⁻¹x)

Thus; √(1 - y²) = cos(2 sin⁻¹x)

dy/dx = d√(1 - y²)]/(√1 - x²)

Read more about Differentiation of Functions at; https://brainly.com/question/5313449

#SPJ1