Respuesta :

Answer:

[tex]\sf Shaded \: Area=14 \pi r+49 \pi[/tex]

Step-by-step explanation:

Area of a circle

[tex]\sf A=\pi r^2 \quad \textsf{(where r is the radius)}[/tex]

To find the area of the shaded area, subtract the area of the unshaded circle from the larger circle.

Area of the larger circle

[tex]\implies \sf A=\pi (r+7)^2[/tex]

Area of the smaller (unshaded) circle

[tex]\implies \sf A=\pi r^2[/tex]

Therefore, the area of the shaded area is:

[tex]\implies \sf A=\pi (r+7)^2-\pi r^2[/tex]

Expand and simplify the expression:

[tex]\implies \sf A=\pi (r+7)^2-\pi r^2[/tex]

[tex]\implies \sf A=\pi (r^2+14r+49)-\pi r^2[/tex]

[tex]\implies \sf A=\pi r^2 +14 \pi r +49 \pi -\pi r^2[/tex]

[tex]\implies \sf A=14 \pi r+49 \pi[/tex]

OUTER CIRCLE AREA

  • π(r+7)²

Inner circle area

  • πr²

Area of shaded one

  • π(r+7)²-πr²
  • π(r²+14r+49-r²)
  • π(14r+49)
  • 14πr+49π