5
The recursive formula for a geometric sequence is given below. What is the third term in the sequence?
f(1) = 2
f(n) = 3f(n − 1)
-
OA. 18
OB. 54
OC. 162
OD. 12
Reset
Submit

Respuesta :

f(1) = 2
f(2) = 3f(1) = 3(2) = 6
f(3) = 3f(2) = 3(6) = 18 (A)
kreyzi

[tex]\Large{ \boxed{ \tt{ \blue{A}}}}\Large{ \boxed{ \tt{ \pink{N}}}}\Large{ \boxed{ \tt{ \green{S}}}}\Large{ \boxed{ \tt{ \purple{W}}}}\Large{ \boxed{ \tt{ \red{E}}}}\Large{ \boxed{ \tt{ \pink{R}}}}[/tex]

[tex] \: \: [/tex]

  • A. 18

[tex] \: \: [/tex]

[tex]\Large{ \boxed{ \tt{ \blue{S}}}}\Large{ \boxed{ \tt{ \pink{O}}}}\Large{ \boxed{ \tt{ \green{L}}}}\Large{ \boxed{ \tt{ \purple{U}}}}\Large{ \boxed{ \tt{ \red{T}}}}\Large{ \boxed{ \tt{ \pink{I}}}}\Large{ \boxed{ \tt{ \blue{O}}}}\Large{ \boxed{ \tt{ \pink{N}}}}[/tex]

[tex] \: \: [/tex]

  • [tex] \mathtt{f(1) = 2}[/tex]
  • [tex] \tt{f(2) \: = \: 3f \: (1) \: = \: 3(2) \: = \: 6}[/tex]
  • [tex] \tt{f(3) \: = \: 3f(2) \: = \: 3(6) \: = \: 18}[/tex]

[tex]\color{pink}─────────────────────────────────────[/tex]

keep learning