Solutions for the three problems are is mathematically given as
(a) First cosmic speed (arbitral velocily)
[tex]v=\sqrt{\frac{G M}{r}}\\v=\sqrt{\frac{6.67 \times 10^{-11} \times 4.74 \times 10^{24}}{5870 \times 10^{3}}}[/tex]
v=7338.9349
(b) Second cosmic speed (escape velo.)
$
\begin{gathered}
[tex]V=\sqrt{\frac{2 G M}{r}}\\\\V=\sqrt{2} \sqrt{\frac{G M}{r}}\\\\=V\sqrt{2} \times 7338.9349 \\[/tex]
[tex]V=14677.86986 \mathrm{~m} / \mathrm{s}[/tex]
(c) In conclusion, in a circular orbit, the gravitational force is gets balanced by centripetal force
[tex]&m_{q \omega \omega^{2}}=\frac{G M M}{r^{2}} \\&r^{3}=\frac{G M}{\omega^{2}}=\frac{G M}{4 \pi^{2}} T^{2} \\&r^{3}=\frac{6.67 \times 10^{-11} \times 4.74 \times 10^{24} \times(16.6 \times 3600)^{7}}{4 \pi^{2}} \\[/tex]
[tex]&r=30581248.06 \times 10^{4} \mathrm{~m} / \mathrm{s}[/tex]
Read more about gravitational force
https://brainly.com/question/12528243
#SPJ1