Respuesta :

Using sum and difference identities from trigonometric identities shows that; Asin(ωt)cos(φ) +Acos(ωt)sin(φ) =  Asin(ωt + φ)

How to prove Trigonometric Identities?

We know from sum and difference identities that;

sin (α + β) = sin(α)cos(β) + cos(α)sin(β)

sin (α - β) = sin(α)cos(β) - cos(α)sin(β)

c₂ = Acos(φ)

c₁ = Asin(φ)

The Pythagorean identity can be invoked to simplify the sum of squares:

c₁² + c₂² =

(Asin(φ))² + (Acos(φ))²

= A²(sin(φ)² +cos(φ)²)

= A² * 1

= A²

Using common factor as shown in the trigonometric identity above for Asin(ωt)cos(φ) +Acos(ωt)sin(φ) gives us;  Asin(ωt + φ)

Complete Question is;

y(t) = distance of weight from equilibrium position

ω = Angular Frequency (measured in radians per second)

A = Amplitude

φ = Phase shift

c₂ = Acos(φ)

c₁ = Asin(φ)

Use the information above and the trigonometric identities to prove that

Asin(ωt + φ) = Asin(ωt)cos(φ) +Acos(ωt)sin(φ)

Read more about Trigonometric Identities at; https://brainly.com/question/7331447

#SPJ1