Two coils are wound around the same cylindrical form. When the current in the first coil is decreasing at a rate of -0.240 A/s, the induced emf in the second coil has a magnitude of 1.60×10−3 V.
a) What is the mutual inductance of the pair of coils?
b) If the second coil has 30 turns, what is the flux through each turn when the current in the first coil equals 1.25 A ?
c) If the current in the second coil increases at a rate of 0.365 A/s , what is the magnitude of the induced emf in the first coil?

Respuesta :

The mutual inductance of the pair of coils is 6.67 x 10⁻³ H.

The the flux through each turn is  2.78 x 10⁻⁴ Tm².

The magnitude of the induced emf in the first coil is 2.435 x 10⁻³ V.

Mutual inductance of the coil

M = -NΦ/I

M = emf/I

M = -(1.6 x 10⁻³)/(-0.24)

M = 6.67 x 10⁻³ H

Flux in the second coil

M = NΦ/I

MI = NΦ

Φ = MI/N

Φ = (6.67 x 10⁻³  x 1.25)/(30)

Φ = 2.78 x 10⁻⁴ Tm²

Induced emf in the first coil

emf = MI

emf = 6.67 x 10⁻³ x 0.365

emf = 2.435 x 10⁻³ V

Thus, the mutual inductance of the pair of coils is 6.67 x 10⁻³ H.

The the flux through each turn is  2.78 x 10⁻⁴ Tm².

The magnitude of the induced emf in the first coil is 2.435 x 10⁻³ V.

Learn more about induced emf here: https://brainly.com/question/13744192

#SPJ1