Respuesta :

The y-value of the terminal point of the vector is 3.

How to determine the resulting vector by applying rotation about the origin

In this question we must apply a matricial form of rotation, which is a kind of rigid transformation. This transformation is defined by the following formula:

[tex]\vec A' = \vec T\cdot \vec A[/tex], where [tex]\vec A' , \vec A \in \mathbb{R}_{1 \times 2}[/tex], [tex]\vec T \in \mathbb{R}_{2 \times 2}[/tex]

If we knw that [tex]\vec A = \left[\begin{array}{c}- 4\\3\end{array}\right][/tex] and [tex]\vec T = \left[\begin{array}{cc}-1&0\\0&1\end{array}\right][/tex], then the transformed vector column is:

[tex]\left[\begin{array}{cc}x\\y\end{array}\right] = \left[\begin{array}{cc}-1&0\\0&1\end{array}\right] \cdot \left[\begin{array}{cc}-4\\3\end{array}\right][/tex]

[tex]\left[\begin{array}{cc}x\\y\end{array}\right] = \left[\begin{array}{cc}4\\3\end{array}\right][/tex]

The y-value of the terminal point of the vector is 3.

To learn more on rotations: https://brainly.com/question/12091224

#SPJ1