Respuesta :

[tex]\textbf{Heya !}[/tex]

✏[tex]\bigstar\textsf{Given:-}[/tex]✏

  • An inequality [tex]\sf{-\cfrac{y}{4}+7 > -1}[/tex]

✏[tex]\bigstar\textsf{To\quad find:-}[/tex]✏

  • y -- ?

▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪

✏[tex]\bigstar\textsf{Solution\quad steps:-}[/tex]✏

First, subtract both sides by 7:-

[tex]\sf{-\cfrac{y}{4} > -1-7}}[/tex]

[tex]\sf{-\cfrac{y}{4} > -8}[/tex]

Now multiply both sides by 4:-

[tex]\sf{-y > -8*4}[/tex]

[tex]\sf{-y > -32}[/tex]

last step:-

[tex]\sf{y < 32}[/tex]

`hope it was helpful to u ~

Answer :

  • Option A. y > 32 is correct!!

Explanation :

[tex] \implies \: \sf{ - \dfrac{y}{4} \: + \: 7 \: > \: - 1} \\ \\ \implies \: \sf{ - \dfrac{y}{4} \: > \: - 7 \: - 1} \\ \\ \implies \: \sf{ - \dfrac{y}{4} \: > \: - 8} \\ \\ \implies \: \sf{ \cancel- \: \dfrac{y}{4} \: > \: \cancel- \: 8} \\ \\ \implies \: \sf{ \dfrac{y}{4} \: < \: 8} \\ \\

\implies \: \sf{ y \: < \: 8 \times 4} \\ \\ \implies \: \bf{ y \: < \: 32}[/tex]