Respuesta :
Answer:
(-2, 2)
Step-by-step explanation:
Given system of equations:
[tex]\begin{cases}y=x+4\\y=-2x-2 \end{cases}[/tex]
To solve by substitution, substitute the first equation into the second equation:
[tex]\implies x+4=-2x-2[/tex]
Add 2x to both sides:
[tex]\implies x+4+2x=-2x-2+2x[/tex]
[tex]\implies 3x+4=-2[/tex]
Subtract 4 from both sides:
[tex]\implies 3x+4-4=-2-4[/tex]
[tex]\implies 3x=-6[/tex]
Divide both sides by 3:
[tex]\implies \dfrac{3x}{3}=\dfrac{-6}{3}[/tex]
[tex]\implies x=-2[/tex]
Substitute the found value of x into the first equation and solve for y:
[tex]\implies y=-2+4[/tex]
[tex]\implies y=2[/tex]
Therefore, the solution to the given system of equations is (-2, 2).
Learn more about systems of equations here:
https://brainly.com/question/27868619
https://brainly.com/question/27868564
Substitute y value from first eqn in second equation
- y=-2x-2
- x+4=-2x-2
- 3x=-6
- x=-2
Put in first one
- y=-2+4=2
(-2,2) is the solution