The equation of the ellipse is [tex]\frac{x^2}{49} + \frac{y^2}{65} = 1[/tex]
The given parameters are:
The above means that:
c = 4 and
The semi-major axis, a = 7 i.e 14/2
Calculate b using
[tex]b = \sqrt{c^2 + a^2[/tex]
So, we have:
[tex]b = \sqrt{4^2 + 7^2[/tex]
[tex]b = \sqrt{65[/tex]
Square both sides
[tex]b^2 = 65[/tex]
The standard form of the ellipse is represented as:
[tex]\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1[/tex]
This gives
[tex]\frac{x^2}{7^2} + \frac{y^2}{65} = 1[/tex]
Evaluate
[tex]\frac{x^2}{49} + \frac{y^2}{65} = 1[/tex]
Hence, the equation of the ellipse is [tex]\frac{x^2}{49} + \frac{y^2}{65} = 1[/tex]
Read more about ellipse at:
https://brainly.com/question/14281133
#SPJ1