Respuesta :

The equation of the ellipse is [tex]\frac{x^2}{49} + \frac{y^2}{65} = 1[/tex]

How to determine the ellipse equation?

The given parameters are:

  • Foci: (-4, 0) and (4, 0)
  • Length of major axis = 14

The above means that:

c = 4 and

The semi-major axis, a = 7 i.e 14/2

Calculate b using

[tex]b = \sqrt{c^2 + a^2[/tex]

So, we have:

[tex]b = \sqrt{4^2 + 7^2[/tex]

[tex]b = \sqrt{65[/tex]

Square both sides

[tex]b^2 = 65[/tex]

The standard form of the ellipse is represented as:

[tex]\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1[/tex]

This gives

[tex]\frac{x^2}{7^2} + \frac{y^2}{65} = 1[/tex]

Evaluate

[tex]\frac{x^2}{49} + \frac{y^2}{65} = 1[/tex]

Hence, the equation of the ellipse is [tex]\frac{x^2}{49} + \frac{y^2}{65} = 1[/tex]

Read more about ellipse at:

https://brainly.com/question/14281133

#SPJ1