contestada

Consider these two functions:
F(x) = 2cos(πx)
G(x) = 1/2cos(2x)
What are the amplitudes and periods of the two functions?

Respuesta :

Answer:

[tex]\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=\mathrm{pK}_{\mathrm{w}}[/tex] for [tex]\mathrm{HCl}[/tex] \& [tex]\mathrm{ClOH}[/tex]

Answer:

f(x):  Amplitude = 2, Period = 2

g(x):  Amplitude = ¹/₂, Period = π

Step-by-step explanation:

The cosine function is periodic, meaning it repeats forever.

Standard form of a cosine function:

f(x) = A cos(B(x + C)) + D

where:

  • A = amplitude (height from the mid-line to the peak)
  • 2π/B = period (horizontal distance between consecutive peaks)
  • C = phase shift (horizontal shift - positive is to the left)
  • D = vertical shift

Function f(x)

[tex]f(x)=2 \cos (\pi x)[/tex]

Comparing this with the standard form of a cosine function:

  • Amplitude = 2
  • [tex]\sf Period = \dfrac{2 \pi}{\pi}=2[/tex]

Function g(x)

[tex]g(x)=\dfrac{1}{2} \cos (2x)[/tex]

Comparing this with the standard form of a cosine function:

  • [tex]\sf Amplitude=\dfrac{1}{2}[/tex]
  • [tex]\sf Period = \dfrac{2 \pi}{2}=\pi[/tex]

Learn more about the cosine graph here:

https://brainly.com/question/27818219

Ver imagen semsee45
Ver imagen semsee45
Ver imagen semsee45