Respuesta :

The limit of

[tex]$\lim _{x \rightarrow 0}\left(\frac{x \cos (\theta)-\theta \cos (x)}{x-\theta}\right)=1$[/tex].

What are limits?

In Mathematics, a limit exists described as a value that a function approaches the output for the provided input values. Limits exist necessary in calculus and mathematical analysis and exist utilized to determine integrals, derivatives, and continuity.

Given:

[tex]$\lim _{x \rightarrow 0}\left(\frac{x \cos (\theta)-\theta \cos (x)}{x-\theta}\right)$[/tex]

Substitute the value x = 0, then we get

[tex]$=\frac{0 \cdot \cos (\theta)-\theta \cos (0)}{0-\theta}$[/tex]

Simplify the above equation, we get

[tex]$\frac{0 \cdot \cos (\theta)-\theta \cos (0)}{0-\theta}= 1$[/tex]

Therefore, the limit of

[tex]$\lim _{x \rightarrow 0}\left(\frac{x \cos (\theta)-\theta \cos (x)}{x-\theta}\right)=1$[/tex]

To learn more about limits refer to:

https://brainly.com/question/23935467

#SPJ9