Respuesta :

a. The equivalent expression for cos(4x) in terms of just x is 8cos⁴x - 8cos²x + 1

b. The equivalent expression for sin(4x) in terms of just x is 4sinxcos³x - 2sinxcosx

a. The equivalent trigonometric expression for cos(4x)

To find the trigonometric expression for cos(4x)

cos(4x) = cos[2(2x)]

Now from trigonometric identities

cos2Ф = 2cos²Ф - 1

Let 2x = Ф.

So, cos(4x) = 2cos²2x - 1

Also, cos2x = 2cos²x - 1

So, substituting cos2x into cos4x, we have

cos(4x) = 2cos²2x - 1

cos(4x) = 2[2cos²x - 1]² - 1

cos(4x) = 2[4cos⁴x - 4cos²x + 1] - 1

cos(4x) = 8cos⁴x - 8cos²x + 2 - 1

cos(4x) = 8cos⁴x - 8cos²x + 1

So, the equivalent expression for cos(4x) in terms of just x is 8cos⁴x - 8cos²x + 1

b. The equivalent trigonometric expression for sin(4x)

To find the expression for sin(4x)

sin(4x) = sin2(2x)

From trigonometric identities sin2Ф = 2sinФcosФ

Let 2x = Ф

So, sin(4x) = sin2(2x)

= 2sin2xcos2x

Since

  • sin2x = 2sinxcosx and
  • cos2x = 2cos²x - 1

Substituting these into the equation, we have

sin(4x) =  2sin2xcos2x

sin(4x) = (2sinxcosx)(2cos²x - 1)

sin(4x) = 4sinxcos³x - 2sinxcosx

So, the equivalent expression for sin(4x) in terms of just x is 4sinxcos³x - 2sinxcosx

Learn more about trigonometric expression here:

https://brainly.com/question/27904371

#SPJ1