Respuesta :

The equation of parabola becomes y = -2/25(x-3)^2 + 4.

According to the statement

we have given a graph and from this graph we have to find the equation of parabola in the general form.

So,

we know that the equation of parabola in general form is

y = a(x-h)^2 +k - (1)

From the graph we have:

a point on the graph is (x,y) = (-2,2)

the vertex of the graph is (h,k) = (3,4)

Now, substitute these values in the equation number (1)

Then

y = a(x-h)^2 +k

2 = a(-2-3)^2 +4

2 = a(-5)^2 +4

2 = a(25) +4

25a = -2

a = -2/25.

Now put a = -2/25 and (h,k) = (3,4) in the equation(1).

Then

the equation of parabola becomes y = -2/25(x-3)^2 + 4

So, The equation of parabola becomes y = -2/25(x-3)^2 + 4.

Learn more about equation of parabola here https://brainly.com/question/4061870

#SPJ4