Calculate the geometric center of the graph the function

The geometric center of the graph under the function is 5/3
The equation of the function is given as:
f(x) = 3 - |x - 2|
The interval is given as:
x ∈ [0, 3]
The geometric center (gc) of the graph under the function is calculated using
gc = ∫x f(x) dx/∫f(x) dx
Substitute the known values in the above equation
gc = ∫x * (3 - |x - 2|) dx/∫3 - |x - 2| dx
Integrate the numerator and the denominator of the above equation
gc = [-1/6(x - 2)((2|x -2| - 9)x + 2|x - 2| - 18)]/[3x - 1/2[|x - 2|(x - 2)]]
Recall that the interval is given as x ∈ [0, 3]
Substitute the interval values in the above equation.
The equation is then simplified using a graphing calculator.
So, we have
gc = (65/6)/(13/2)
Express the quotient expression as a product
gc = (65/6) * (2/13)
Divide 65 by 13
gc = 5/6 * 2
Divide 2 by 6
gc = 5/3
Hence, the geometric center of the graph under the function is 5/3
Read more about geometric center at:
https://brainly.com/question/28099595
#SPJ1