On a coordinate plane, a curved line labeled f of x with a minimum value of (1.9, negative 5.7) and a maximum value of (0, 2), crosses the x-axis at (negative 0.7, 0), (0.76, 0), and (2.5, 0), and crosses the y-axis at (0, 2).
Which statement is true about the graphed function?

F(x) < 0 over the intervals (-āˆž, -0.7) and (0.76, 2.5).
F(x) > 0 over the intervals (-āˆž, -0.7) and (0.76, 2.5).
F(x) < 0 over the intervals (-0.7, 0.76) and (2.5, āˆž).
F(x) > 0 over the intervals (-0.7, 0.76) and (0.76, āˆž).

Respuesta :

The graphed function, F(x), has a value greater than 0 over the intervals (-0.7, 0.76) and (0.76, Ā āˆž) . F(x) > 0 over the intervals (-0.7, 0.76) and (0.76, āˆž) is the correct statement [Fourth choice].

About a Graphed Function

The function graph of an object F stands for the set of all points in the plane that are (x, f(x)). The graph of f is also known as the graph of y = f. (x). The graph of an equation is thus a specific example of the graph of a function. A graphed function is a function that has been drawn out on a graph.

It is evident from the attached graph that the supplied function exceeds 0 for the following range:

-0.7 < F(x) < 0.76

And, 0.76 < F(x) < āˆž

As a result, the intervals for which the given graphed function, F(x) is greater than 0 are as follows,

(-0.7, 0.76) and (0.76, āˆž)

Learn more about a graphed function here:

https://brainly.com/question/27757761

#SPJ1

Ver imagen tushargupta0691