Respuesta :
(1) The greatest height h at which the pilot could shut off the engine if the velocity of the lander relative to the surface at that moment is zero is 0.4 m.
(2) The greatest height h at which the pilot could shut off the engine if the velocity of the lander relative to the surface at that moment is 1.7 m/s downward is 0.25 m.
(3) The greatest height h at which the pilot could shut off the engine if the velocity of the lander relative to the surface at that moment is 1.7 m/s upward is 0.25 m.
Maximum height
v² = u² - 2gh
where;
- v is final velocity
- u is initial velocity
when the lander's velocity = 0
0 = u² - 2gh
u² = 2gh
h = u²/2g
h = (2.8²)/(2 x 9.8)
h = 0.4 m
when the velocity of the lander is 1.7 m/s downward
h = (u² - v²)/2g
h = (2.8² - 1.7²)/(2 x 9.8)
h = 0.25 m
when the velocity of the lander is 1.7 m/s upward
h = (u² - v²)/2g
h = (2.8² - 1.7²)/(2 x 9.8)
h = 0.25 m
Thus, the greatest height h at which the pilot could shut off the engine if the velocity of the lander relative to the surface at that moment is zero is 0.4 m.
The greatest height h at which the pilot could shut off the engine if the velocity of the lander relative to the surface at that moment is 1.7 m/s downward is 0.25 m.
The greatest height h at which the pilot could shut off the engine if the velocity of the lander relative to the surface at that moment is 1.7 m/s upward is 0.25 m.
Learn more about height here: https://brainly.com/question/1739912
#SPJ1