Respuesta :
The current is 1.13* 10^{-4}A
Given that r = radius of the coil = 4 cm = 0.04 m
Area of coil is given as
A = πr²
A = (3.14) (0.04)² = 0.005024 m²
N = Number of turns = 500
R = Resistance = 600 Ω
B = magnetic field = (0.0120)t + (3 x 10⁻⁵) t⁴
Taking derivative at both the side
[tex] \frac{dB}{dt} = (0.120 + (12 \times 10^-5)t^3)[/tex]
Induced current is given as
[tex]i= (\frac{NA}{R} )( \frac{db}{dt} )[/tex]
[tex]i \: = (\frac{NA}{R})(12 \times 10 ^{-5} )t^3[/tex]
substituting the value t = 5
[tex]i = ( \frac{(500)(0.005024)}{600}) (12 \times 10 ^{-5} )5^3[/tex]
[tex]i = 1.13 \times 10 ^{ - 4} A[/tex]
Hence the current is
[tex]1.13 \times 10^-4A[/tex]
Learn more about Electric current here
https://brainly.com/question/1100341
#SPJ1
The Electric current is 1.11* 10^{-4}A
Given that the coil's radius is 3.55 cm (0.35 m),
The formula for the coil's area is A = r2 A = (3.14) (0.35)2 = 0.005024 m2.
R = Resistance = 600 N = Number of spins = 500 B = Magnetic field = (0.0120)
t + (3 x 10⁻⁵) t⁴
The number t = 5 is substituted for taking the derivative at both the induced current and the electric current.
The Electric current is therefore 1.11* 10^{-4}A
Electric current - The rate of electron passage in a conductor is known as electric current. The ampere is the electric current's SI unit. Electrons are little particles that are part of a substance's molecular structure. These electrons can be held loosely or securely depending on the situation.
To learn more about electric current please visit -https://brainly.com/question/12791045
#SPJ1