Respuesta :

Answer:

First function:

Zeros = 6 and -6. Y-intercept = (0,72). X-intercepts = (6,0) and (-6,0).

Second function:

Zeros = 3 and -3. Y-intercept = (0, -27). X-intercepts: (3, 0) and (-3, 0).

Step-by-step explanation:

The zeros are x-intercept numbers.

The y-intercept can be found when the function is in standard form. Plug in 0 for x, then solve.

Hope this helps!

Esther

Answer:

1. x₁ = 6, x₂ = -6

2. x₁ = 3, x₂ = -3

Step-by-step explanation:

Given functions:

[tex]1)\ f(x) = -2(x-6)(x+6)[/tex]

[tex]2)\ f(x)=(x-3)(3x+9)[/tex]

..................................................................................................................................................

Zero Product Property: If m • n = 0, then m = 0 or n = 0.

Standard Form of a Quadratic: ax² + bx + c = 0.

..................................................................................................................................................

1. f(x) = -2(x - 6)(x + 6)

Step 1: Set the function to zero.

[tex]\implies 0 = -2(x-6)(x+6)[/tex]

Step 2: Divide both sides of equation by [tex]-2[/tex].

[tex]\implies \dfrac{0}{-2} = \dfrac{-2(x-6)(x+6)}{-2}[/tex]

[tex]\implies 0=(x-6)(x+6)[/tex]

Step 3: Apply the Zero Product Property.

[tex]x_1 \implies x-6=0[/tex]

[tex]x_2 \implies x+6=0[/tex]

Step 4: Solve for x in both equations.

[tex]x-6+6=0+6 \implies \boxed{x_1 = 6}[/tex]

[tex]x+6-6=0-6 \implies \boxed{x_1 = -6}[/tex]

The zeros (x-intercepts) of this function are: [tex]x_1=6,\ x_2=-6[/tex].

.................................................................................................................................................

2. f(x) = (x - 3)(3x + 9)

Step 1: Set the function to zero.

[tex]\implies 0 = (x - 3)(3x + 9)[/tex]

Step 2: Apply the Zero Product Property.

[tex]x_1 \implies x-3=0[/tex]

[tex]x_2 \implies 3x + 9=0[/tex]

Step 3: Solve for x in both equations.

[tex]x-3+3=0+3 \implies \boxed{x_1 = 3}[/tex]

[tex]3x=-9 \implies \dfrac{3x}{3}=\dfrac{-9}{3} \implies \boxed{x_1 = -3}[/tex]

The zeros (x-intercepts) of this function are: [tex]x_1=3,\ x_2=-3[/tex].

..................................................................................................................................................

Other examples:

brainly.com/question/28105314

brainly.com/question/27638369