Respuesta :

Answer:

17

Step-by-step explanation:

x+3x+x-7=78

5x-7=78

5x=78+7

5x=85

x=85/5

x=17

Answer:

The three numbers are 17, 10 and 51.

Step-by-step explanation:

Let the first, second, and third numbers be [tex]x[/tex], [tex]y[/tex], and [tex]z[/tex] respectively.

• From the question, we know:

sum of the numbers is 78.

∴ [tex]x + y + z = 78[/tex]   ----------(1st equation)

Let's express both [tex]x[/tex] and  [tex]z[/tex] in terms of [tex]\bf y[/tex] :

• We know that:

the third number is 3 times the first.

∴ [tex]z = 3x[/tex]

⇒ [tex]x = \frac{z}{3}[/tex]     ----------(2nd equation)

• We also know that:

the first number is 7 more than the second.

∴ [tex]\boxed{x = 7 + y}[/tex]

Substituting  [tex]x = \frac{z}{3}[/tex]  (from 2nd equation)

⇒ [tex]\frac{z}{3} = 7 + y[/tex]

⇒ [tex]\boxed{z = 21 + 3y}[/tex]

• We can now substitute  [tex]x = 7 + y[/tex]  and  [tex]z = 21 + 3y[/tex]  into the first equation:

[tex]x + y + z = 78[/tex]

⇒ [tex](7 + y) + y + (21 + 3y) = 78[/tex]

⇒ [tex]5y + 28 = 78[/tex]

⇒ [tex]5y = 50[/tex]

⇒ [tex]y = \bf 10[/tex]

∴ [tex]x = 7 + 10\\[/tex]

⇒ [tex]x = \bf 17[/tex]

[tex]z = 21 + 3(10)[/tex]

⇒ [tex]z = \bf 51[/tex]

∴ The three numbers are 17, 10 and 51.