Answer:
[tex]x=-3[/tex]
Step-by-step explanation:
Given equation:
[tex]\dfrac{2x}{x+1}+\dfrac{3(x+1)}{x}=5[/tex]
Make the denominators the same:
[tex]\implies \dfrac{2x}{x+1} \cdot\dfrac{x}{x}+\dfrac{3(x+1)}{x} \cdot \dfrac{x+1}{x+1}=5[/tex]
[tex]\implies \dfrac{2x^2}{x(x+1)}+\dfrac{3(x+1)^2}{x(x+1)} =5[/tex]
Combine the fractions:
[tex]\implies \dfrac{2x^2+3(x+1)^2}{x(x+1)} =5[/tex]
Multiply both sides by x(x+1):
[tex]\implies 2x^2+3(x+1)^2 =5x(x+1)[/tex]
Expand the brackets:
[tex]\implies 2x^2+3(x^2+2x+1) =5x^2+5x[/tex]
[tex]\implies 2x^2+3x^2+6x+3 =5x^2+5x[/tex]
Combine like terms:
[tex]\implies 5x^2+6x+3=5x^2+5x[/tex]
Subtract 5x² from both sides:
[tex]\implies 6x+3=5x[/tex]
Subtract 5x from both sides:
[tex]\implies x+3=0[/tex]
Subtract 3 from both sides:
[tex]\implies x=-3[/tex]
Learn more about algebraic fractions here:
https://brainly.com/question/27943438
https://brainly.com/question/27979364