Respuesta :

Answer:

[tex]x=-3[/tex]

Step-by-step explanation:

Given equation:

[tex]\dfrac{2x}{x+1}+\dfrac{3(x+1)}{x}=5[/tex]

Make the denominators the same:

[tex]\implies \dfrac{2x}{x+1} \cdot\dfrac{x}{x}+\dfrac{3(x+1)}{x} \cdot \dfrac{x+1}{x+1}=5[/tex]

[tex]\implies \dfrac{2x^2}{x(x+1)}+\dfrac{3(x+1)^2}{x(x+1)} =5[/tex]

Combine the fractions:

[tex]\implies \dfrac{2x^2+3(x+1)^2}{x(x+1)} =5[/tex]

Multiply both sides by x(x+1):

[tex]\implies 2x^2+3(x+1)^2 =5x(x+1)[/tex]

Expand the brackets:

[tex]\implies 2x^2+3(x^2+2x+1) =5x^2+5x[/tex]

[tex]\implies 2x^2+3x^2+6x+3 =5x^2+5x[/tex]

Combine like terms:

[tex]\implies 5x^2+6x+3=5x^2+5x[/tex]

Subtract 5x² from both sides:

[tex]\implies 6x+3=5x[/tex]

Subtract 5x from both sides:

[tex]\implies x+3=0[/tex]

Subtract 3 from both sides:

[tex]\implies x=-3[/tex]

Learn more about algebraic fractions here:

https://brainly.com/question/27943438

https://brainly.com/question/27979364

Otras preguntas