contestada

A 1300 kg steel beam is supported by two ropes. (Figure
1)

What is the tension in rope 1?

What is the tension in rope 2?

A 1300 kg steel beam is supported by two ropes Figure 1 What is the tension in rope 1 What is the tension in rope 2 class=

Respuesta :

Relative to the positive horizontal axis, rope 1 makes an angle of 90 + 20 = 110 degrees, while rope 2 makes an angle of 90 - 30 = 60 degrees.

By Newton's second law,

  • the net horizontal force acting on the beam is

[tex]R_1 \cos(110^\circ) + R_2 \cos(60^\circ) = 0[/tex]

where [tex]R_1,R_2[/tex] are the magnitudes of the tensions in ropes 1 and 2, respectively;

  • the net vertical force acting on the beam is

[tex]R_1 \sin(110^\circ) + R_2 \sin(60^\circ) - mg = 0[/tex]

where [tex]m=1300\,\rm kg[/tex] and [tex]g=9.8\frac{\rm m}{\mathrm s^2}[/tex].

Eliminating [tex]R_2[/tex], we have

[tex]\sin(60^\circ) \bigg(R_1 \cos(110^\circ) + R_2 \cos(60^\circ)\bigg) - \cos(60^\circ) \bigg(R_1 \sin(110^\circ) + R_2 \sin(60^\circ)\bigg) = 0\sin(60^\circ) - mg\cos(60^\circ)[/tex]

[tex]R_1 \bigg(\sin(60^\circ) \cos(110^\circ) - \cos(60^\circ) \sin(110^\circ)\bigg) = -\dfrac{mg}2[/tex]

[tex]R_1 \sin(60^\circ - 110^\circ) = -\dfrac{mg}2[/tex]

[tex]-R_1 \sin(50^\circ) = -\dfrac{mg}2[/tex]

[tex]R_1 = \dfrac{mg}{2\sin(50^\circ)} \approx \boxed{8300\,\rm N}[/tex]

Solve for [tex]R_2[/tex].

[tex]\dfrac{mg\cos(110^\circ)}{2\sin(50^\circ)} + R_2 \cos(60^\circ) = 0[/tex]

[tex]\dfrac{R_2}2 = -mg\cot(110^\circ)[/tex]

[tex]R_2 = -2mg\cot(110^\circ) \approx \boxed{9300\,\rm N}[/tex]