Answer:
Approximately [tex]25\; {\rm N}[/tex] assuming that [tex]g = 9.81\; {\rm m\cdot s^{-2}}[/tex].
Explanation:
This mass is in a circular motion of radius [tex]r[/tex]. Hence, when the velocity of the mass is [tex]v[/tex], the acceleration of this mass should be [tex](v^{2} / r)[/tex]. The net force on this mass should be [tex](\text{net force}) = (m\, v^{2}) / r[/tex] towards the center of the circle.
When this [tex]m = 0.80\; {\rm kg}[/tex] mass is at the top of this circle, both gravitational pull and the force of the string (tension) point downwards. Hence, the net force on this mass would be:
[tex](\text{net force}) = (\text{weight}) + (\text{tension})[/tex].
Thus:
[tex]\begin{aligned} (\text{tension}) &= (\text{net force}) -(\text{weight})\\ &= \frac{m\, v^{2}}{r} - m\, g \\ &= m\, \left(\frac{v^{2}}{r} - g\right) \\ &= 0.80\; {\rm kg}\times \left(\frac{(9.0\; {\rm m\cdot s^{-1}})^{2}}{2.0\; {\rm m}} - 9.81\; {\rm m\cdot s^{-2}}\right) \\ &\approx 25\; {\rm kg \cdot m\cdot s^{-2}} \\ &= 25\; {\rm N}\end{aligned}[/tex].