Find the product of:
(3x - 4)(2x^2 + 2x - 1).

A. 6x^3 + 2x^2 - 5x + 4
B. 6x^3 + 14x^2 - 11x + 4
C. 6x^3 - 14^2 - 5x + 4
D. 6x^3 - 2x^2 - 11x + 4

Find the product of 3x 42x2 2x 1 A 6x3 2x2 5x 4 B 6x3 14x2 11x 4 C 6x3 142 5x 4 D 6x3 2x2 11x 4 class=

Respuesta :

Answer:

6x^3 -2x^2-11x + 4

Step-by-step explanation:

(3x - 4)(2x^2 + 2x - 1)

(3x - 4)(2x^2 + 2x - 1)

[(3x)(2x^2 + 2x - 1)]  +  [-4(2x^2 + 2x - 1)]

6x^3 + 6x^2 - 3x           -8x^2 - 8x + 4

6x^3 + [6x^2-8x^2] [- 3x- 8x] + 4

6x^3 -2x^2-11x + 4

Answer:

[tex]6x^3-2x^2-11x+4[/tex]

Step-by-step explanation:

Given expression:

[tex](3x-4)(2x^2+2x-1)[/tex]

Distribute the parentheses:

[tex]\implies 3x(2x^2+2x-1)-4(2x^2+2x-1)[/tex]

[tex]\implies 3x \cdot 2x^2+3x \cdot 2x +3x \cdot -1 -4 \cdot 2x^2-4 \cdot 2x-4 \cdot -1[/tex]

[tex]\implies 6x^3+6x^2 -3x -8x^2-8x+4[/tex]

Collect like terms:

[tex]\implies 6x^3+6x^2-8x^2 -3x -8x+4[/tex]

Combine like terms:

[tex]\implies 6x^3-2x^2-11x+4[/tex]