Respuesta :

By eliminating exponents, the logarithmic expression [tex]\log_{c} x\cdot y^{6}\cdot z^{-4}[/tex] is equivalent to the logarithmic expression [tex]\log_{c} x + 6\cdot \log_{c} y - 4\cdot \log_{c} z[/tex].

How to simplify logarithmic functions

In this problem we are supposed to eliminate all exponents of a logarithmic function by applying any of the following properties:

  1. ㏒ x · y = ㏒ x + ㏒ y
  2. ㏒ x/y = ㏒ x - ㏒ y
  3. ㏒ yˣ = x · ㏒ y

Now, we proceed to simplify the function:

[tex]\log_{c} x\cdot y^{6}\cdot z^{-4}[/tex]

[tex]\log_{c} x + \log_{c} y^{6} + \log_{c} z^{-4}[/tex]

[tex]\log_{c} x + 6\cdot \log_{c} y - 4\cdot \log_{c} z[/tex]

By eliminating exponents, the logarithmic expression [tex]\log_{c} x\cdot y^{6}\cdot z^{-4}[/tex] is equivalent to the logarithmic expression [tex]\log_{c} x + 6\cdot \log_{c} y - 4\cdot \log_{c} z[/tex].

To learn more on logarithms: https://brainly.com/question/24211708

#SPJ1