By eliminating exponents, the logarithmic expression [tex]\log_{c} x\cdot y^{6}\cdot z^{-4}[/tex] is equivalent to the logarithmic expression [tex]\log_{c} x + 6\cdot \log_{c} y - 4\cdot \log_{c} z[/tex].
In this problem we are supposed to eliminate all exponents of a logarithmic function by applying any of the following properties:
Now, we proceed to simplify the function:
[tex]\log_{c} x\cdot y^{6}\cdot z^{-4}[/tex]
[tex]\log_{c} x + \log_{c} y^{6} + \log_{c} z^{-4}[/tex]
[tex]\log_{c} x + 6\cdot \log_{c} y - 4\cdot \log_{c} z[/tex]
By eliminating exponents, the logarithmic expression [tex]\log_{c} x\cdot y^{6}\cdot z^{-4}[/tex] is equivalent to the logarithmic expression [tex]\log_{c} x + 6\cdot \log_{c} y - 4\cdot \log_{c} z[/tex].
To learn more on logarithms: https://brainly.com/question/24211708
#SPJ1